def ECC1(num): p = 146808027458411567 A = 46056180 B = 2316783294673 E = EllipticCurve(GF(p),[A,B]) P = E.random_point() Q = num*P print E print 'P:',P print 'Q:',Q
数比较小,直接出,典型已知qp求k.
1 2 3 4 5 6 7 8 9 10 11 12
from Crypto.Util.number import * from sage.all import * p = 146808027458411567 a = 46056180 b = 2316783294673 E = EllipticCurve(GF(p),(a,b)) P = E(119851377153561800,50725039619018388) Q = E(22306318711744209,111808951703508717)
def ECC2(num): p = 1256438680873352167711863680253958927079458741172412327087203 #import random #A = random.randrange(389718923781273978681723687163812) #B = random.randrange(816378675675716537126387613131232121431231) A = 377999945830334462584412960368612 B = 604811648267717218711247799143415167229480 E = EllipticCurve(GF(p),[A,B]) P = E.random_point() Q = num*P print E print 'P:',P print 'Q:',Q factors, exponents = zip(*factor(E.order())) primes = [factors[i] ^ exponents[i] for i in range(len(factors))][:-1] print primes dlogs = [] for fac in primes: t = int(int(P.order()) / int(fac)) dlog = discrete_log(t*Q,t*P,operation="+") dlogs += [dlog] print("factor: "+str(fac)+", Discrete Log: "+str(dlog)) #calculates discrete logarithm for each prime order print num print crt(dlogs,primes)
from Crypto.Util.number import * p = 1256438680873352167711863680253958927079458741172412327087203 a = 377999945830334462584412960368612 b = 604811648267717218711247799143415167229480 E = EllipticCurve(GF(p),(a,b)) P=E(550637390822762334900354060650869238926454800955557622817950 ,700751312208881169841494663466728684704743091638451132521079) Q=E(1152079922659509908913443110457333432642379532625238229329830 ,819973744403969324837069647827669815566569448190043645544592) n=E.order() def f(n,P,Q): factors, exponents = zip(*factor(n)) primes = [factors[i] ^ exponents[i] for i in range(len(factors))][:-1] print (primes) dlogs = [] for fac in primes: t = int(int(P.order()) // int(fac)) dlog = discrete_log(t*Q,t*P,operation="+") dlogs += [dlog] print("factor: "+str(fac)+", Discrete Log: "+str(dlog)) #calculates discrete logarithm for each prime order num2=crt(dlogs,primes) return num2 num2=f(n,P,Q) print(long_to_bytes(num2))
def ECC3(num): p = 0xd3ceec4c84af8fa5f3e9af91e00cabacaaaecec3da619400e29a25abececfdc9bd678e2708a58acb1bd15370acc39c596807dab6229dca11fd3a217510258d1b A = 0x95fc77eb3119991a0022168c83eee7178e6c3eeaf75e0fdf1853b8ef4cb97a9058c271ee193b8b27938a07052f918c35eccb027b0b168b4e2566b247b91dc07 B = 0x926b0e42376d112ca971569a8d3b3eda12172dfb4929aea13da7f10fb81f3b96bf1e28b4a396a1fcf38d80b463582e45d06a548e0dc0d567fc668bd119c346b2 E = EllipticCurve(GF(p),[A,B]) P = E.random_point() Q = num*P print E print 'P:',P print 'Q:',Q
在椭圆曲线上,阶是指椭圆曲线上所有点的数量
1 2 3 4 5 6 7
p = 0xd3ceec4c84af8fa5f3e9af91e00cabacaaaecec3da619400e29a25abececfdc9bd678e2708a58acb1bd15370acc39c596807dab6229dca11fd3a217510258d1b A = 0x95fc77eb3119991a0022168c83eee7178e6c3eeaf75e0fdf1853b8ef4cb97a9058c271ee193b8b27938a07052f918c35eccb027b0b168b4e2566b247b91dc07 B = 0x926b0e42376d112ca971569a8d3b3eda12172dfb4929aea13da7f10fb81f3b96bf1e28b4a396a1fcf38d80b463582e45d06a548e0dc0d567fc668bd119c346b2 E = EllipticCurve(GF(p),[A,B]) P = E.random_point() print(P.order()) #11093300438765357787693823122068501933326829181518693650897090781749379503427651954028543076247583697669597230934286751428880673539155279232304301123931419
p = 0xd3ceec4c84af8fa5f3e9af91e00cabacaaaecec3da619400e29a25abececfdc9bd678e2708a58acb1bd15370acc39c596807dab6229dca11fd3a217510258d1b A = 0x95fc77eb3119991a0022168c83eee7178e6c3eeaf75e0fdf1853b8ef4cb97a9058c271ee193b8b27938a07052f918c35eccb027b0b168b4e2566b247b91dc07 B = 0x926b0e42376d112ca971569a8d3b3eda12172dfb4929aea13da7f10fb81f3b96bf1e28b4a396a1fcf38d80b463582e45d06a548e0dc0d567fc668bd119c346b2 E = EllipticCurve(GF(p),[A,B]) P = E(10121571443191913072732572831490534620810835306892634555532657696255506898960536955568544782337611042739846570602400973952350443413585203452769205144937861,8425218582467077730409837945083571362745388328043930511865174847436798990397124804357982565055918658197831123970115905304092351218676660067914209199149610) Q = E(964864009142237137341389653756165935542611153576641370639729304570649749004810980672415306977194223081235401355646820597987366171212332294914445469010927,5162185780511783278449342529269970453734248460302908455520831950343371147566682530583160574217543701164101226640565768860451999819324219344705421407572537) def SmartAttack(P,Q,p): E = P.curve() Eqp = EllipticCurve(Qp(p, 2), [ ZZ(t) + randint(0,p)*p for t in E.a_invariants() ])
P_Qps = Eqp.lift_x(ZZ(P.xy()[0]), all=True) for P_Qp in P_Qps: if GF(p)(P_Qp.xy()[1]) == P.xy()[1]: break
Q_Qps = Eqp.lift_x(ZZ(Q.xy()[0]), all=True) for Q_Qp in Q_Qps: if GF(p)(Q_Qp.xy()[1]) == Q.xy()[1]: break
p_times_P = p*P_Qp p_times_Q = p*Q_Qp
x_P,y_P = p_times_P.xy() x_Q,y_Q = p_times_Q.xy()
phi_P = -(x_P/y_P) phi_Q = -(x_Q/y_Q) k = phi_Q/phi_P return ZZ(k) num3 = SmartAttack(P, Q, p) print(long_to_bytes(num3))